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Abstract: A novel approach for time-domain diffuse correlation spectroscopy (TD-DCS) has 
been recently proposed, which has the unique advantage by simultaneous measurements of 
optical and dynamical properties in a scattering medium. In this study, analytical models for 
calculating the time-resolved electric-field autocorrelation function is presented for a multi-
layer turbid sample, as well as a semi-infinite medium embedded with a small dynamic 
heterogeneity. To verify the analytical models, we used Monte Carlo simulations, which 
demonstrated that the theoretical prediction for the time-resolved autocorrelation function was 
highly consistent with the Monte Carlo simulation, validating the proposed analytical models. 
Using these analytical models, we also showed that TD-DCS has a higher sensitivity 
compared to conventional continuous-wave (CW) DCS for detecting the deeper dynamics. 
The presented analytical models and simulations can be utilized for quantification of optical 
and dynamical properties from future TD-DCS experimental data as well as for optimization 
of the experimental design to achieve maximum contrast for deep tissue dynamics. 
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.5280) Photon migration; (170.6920) Time-resolved imaging; (170.3660) Light propagation in 
tissues; (170.3890) Medical optics instrumentation. 
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1. Introduction 

Diffuse correlation spectroscopy (DCS) is an optical technique utilizing the scattering feature 
of coherent light to probe the dynamical properties of a scattering (or turbid) medium [1–7]. 
In a conventional DCS, a continuous-wave (CW) laser source is used, which has a long 
coherent length (e.g., much longer than the typical pathlength of the detected photons), 
enabling interference of light traveling along different paths [6,7]. The measured temporal 
autocorrelation function of the detected light intensity is a decay curve with respect to the lag 
time. The decay curve contains information about the motion of the scatterers; faster decay 
indicates faster dynamics of the scatterers [4–12]. Since the light detected consists of many 
photons experiencing various scattering events and traveling along different paths, it is not 
possible for CW-DCS to differentiate photons with different pathlengths. Therefore, using a 
CW-DCS system to reveal dynamic heterogeneity in a turbid sample with background 
dynamics is not straightforward. To deal with this difficulty, various methods including the 
perturbation model for a semi-infinite medium [4,5,8] and the multi-layer model have been 
developed [13]. However, due to limited contrast of CW-DCS with respect to deeper 
dynamics, these approaches are not very robust experimentally when the rate of the detected 
photons (or photon count rate) is low. In particular, when biological tissue are measured in 
vivo, the count rate is generally low due to safety standards, which limit the input power of 
the illuminating light. The higher level of noise on the measured intensity autocorrelation 
function easily obscures the already limited contrast for deeper dynamics due to the lower 
count rate. 

Although Yodh et al. [14] showed the feasibility of path-length resolved DCS approach 
previously, the technique used nonlinear optical gating and required high laser powers, which 
was not suitable for in vivo applications. Very recently, Sutin et al. [15] have reported a novel 
approach for time-domain (or pathlength-resolved) DCS on phantoms and in a rat brain, 
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which demonstrated the clinical feasibility of this approach. In contrast to a CW-DCS setup, a 
pulse laser was used as a laser source in TD-DCS. The pulse laser has to have sufficiently 
short pulse width (tens to hundreds of picoseconds) while maintaining adequate coherence 
length (several centimeters) [15]. Apart from the laser source, all the other optoelectronic 
components in this TD-DCS system were very similar to those used in a typical time-resolved 
spectroscopy (TRS) measurement. Thus, this approach is mostly compatible with commonly-
used TRS systems, enabling simultaneous measure of optical parameters of absorption and 
scattering coefficients and dynamic parameter of scattering particle diffusion coefficient. A 
combination of such a TD-DCS with a TRS system could provide depth-resolved information 
on tissue hemodynamics, including blood oxygenation (measured by TRS) and flow 
(measured by TD-DCS). Thus, it has great potential for biomedical application, such as 
monitoring cerebral hemodynamics associated with neural activity [15]. 

To quantify the dynamic parameter from the measured intensity autocorrelation function, 
various analytical models for CW-DCS have been developed for different measurement 
geometries [4, 5, 8]. Reflectance geometry is widely adopted in biomedical applications such 
as brain function monitoring, in which the source and detector are located on the same surface 
of the sample. For this geometry, the commonly used models include homogeneous semi-
infinite and multi-layer models as well as a perturbation model in which a small dynamic 
heterogeneity embedded in a semi-infinite turbid medium [4,5,8]. However, these currently 
existing models cannot be directly applied for TD-DCS. Therefore, in this work, we present 
analytical models for predicting the time-resolved (or pathlength-resolved) electric field 
autocorrelation function, in particular for a homogeneous multi-layer model and a 
perturbation model for semi-infinite medium that contains a small dynamic heterogeneity. 
Monte Carlo simulations were implemented to verify the accuracy of these analytical 
expressions. By using these analytical and Monte Carlo models we also demonstrate the 
advantage of TD-DCS over CW-DCS for improved sensitivity of probing deeper dynamics. 
Thus, we demonstrate that these analytical expressions and Monte Carlo simulations can 
allow optimizing future experimental protocols for improved depth selectivity. 

2. Analytical model for TD-DCS 

In a semi-infinite medium characterized by the absorption coefficient μa and the reduced 
scattering coefficient μs

’, it is straightforward to obtain the normalized electric-field 
autocorrelation g1(τ,s) for a pathlength s [4–10]: 2 , 2

1
1( , ) exp( ( ) )3 sg s k s rτ μ τ= − Δ . k is the 

wave number in the medium, and <Δr2(τ)> is the mean-squared displacement of the scatterers 
in time τ. If the scatterers are undergoing diffusive (or Brownian) motion, 2 ( ) 6 Br Dτ τΔ =  [4–

12], where DB is the scattering particle diffusion coefficient, then 2 ,
1( , ) exp( 2 )s Bg s k sDτ μ τ= − , 

is an exponential function with respect to the lag time τ [15]. For simplicity, in this paper we 
assume that the scatterers undergo Brownian motion. In the following part of this section, we 
will focus on implementing the analytical model of TD-DCS for multi-layer turbid sample 
and a perturbation model for a small heterogeneity embedded within a semi-infinite medium. 
Here, we only consider reflectance measurement geometry, where the source and detector are 
located on the same side of the sample surface, since it is commonly used for brain function 
measurements in both preclinical and clinical studies (see for example the reviews 6-9). 

2.1 TD-DCS in a multi-layer turbid sample 

For a pulsed point source located at rs, the time-resolved electric-field autocorrelation 
function ( , , )G t τr  obeys a time-dependent correlation diffusion equation (as long as the 

diffusion approximation is valid, e.g., photon behavior inside the medium is dominated by 
scattering, and 26 1Bk D τ  , which generally holds in many practical cases when τ <10−3 s): 

                                                                              Vol. 8, No. 12 | 1 Dec 2017 | BIOMEDICAL OPTICS EXPRESS 5520 



 
'

2 ' ' 2 2 '3
(3 6 ) ( , , ) 3 ( ) ( )s

a s s B s sk D G t t
v t

μμ μ μ τ τ μ δ δ
 ∂∇ − + − = − − ∂ 

r r r  (1) 

where v is the speed of light in the medium. 
Next, we consider a turbid slab consisting of N layers (see Fig. 1) [13], where each layer 

is characterized by its absorption coefficient μa
(n) and reduced scattering coefficient μs

’(n) (n = 
1,2,…,N). The inter-layer boundaries are perpendicular to the z-axis and are located at z = Ln. 
The front surface of the slab is at z = L0 = 0 and the back surface is at z = LN = L. The width 
of each layer is Δn. The source location rs can be rewritten in polar coordinates as rs = (ρ = 
0,zs), where zs = 1/μs

’(1) . 

 

Fig. 1. Scheme of the N-layer scattering medium including the position of the source and 
detector. 

To solve this equation in a multi-layer medium (along z direction), it is convenient to 
make a Fourier transform for the real space (ρ, z), as well as the time t, and then solve the 
equation in the Fourier space (q, z, ω). 

 2( , , , ) exp( ) ( , , , ) exp( )
t

G z dt i t d G z t iω τ ω τ
∧

= ⋅ ρq ρ ρ q ρ  (2) 

where ρ lies in the z = constant plane. Then we have 

 ' ' 2 2 '
2

3 ( 2 ) ( , , , ) 3 ( )s a s B s s
ik D G z z zcz
ωμ μ μ τ ω τ μ δ

∧∂ − + − − = − − ∂ 
q q  (3) 

We divide the top first layer into two sub-layers: layer 0 (0<z<zs) identified by n = 0, and 
layer 1 (zs<z<L1), identified by n = 1. The solution of Eq. (3) inside the n’th layer can be 
written as 

 ( , , , ) exp( ) exp( )n n n n nG z A z B zω τ β β
∧

= + −q  (4) 

where 2 2 ' ( ) ( ) ' ( ) 23 ( 2 )n n n
n s a s B

ik D c
ωβ μ μ μ τ= + + −q , An and Bn are constant factors for each 

layer, which can be determined by the boundary conditions of Eq. (3) in the layered medium: 
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where z0 ~1/μs
’(1) and zN ~1/μs

’(N) are the extrapolation lengths taking into account of internal 
reflection at the external (z = 0 and z = L, respectively) boundaries of the slab. Dn = v/(3μs

’(n)) 
denotes the photon diffusion coefficient in layer n. 

With the above boundary conditions, the constant parameters An and Bn can be 
determined for each layer, and then ( , , , )nG z ω τ

∧
q  can be obtained. For the top layer (layer 0) 

0 ( , , , )G z ω τ
∧

q can be written as a ratio: 

 0 ( , 0, , )
n

Numerator
G z

Denomi ator
ω τ

∧
= =q  (6) 

The detailed expression of the Numerator and Denominator in Eq. (6) is tedious for each 
case (e.g., depending on the number of layers), thus we give equations below only for N = 1, 
2 and 3, with the bottom layer being semi-infinite. 

N = 1: 

 
' (1)

0 1

1 0

3 exp( )

min 1
s sNumerator z z

Deno ator z

μ β
β

= −
= +

 (7) 

N = 2: 

 
[ ] [ ]{ }' (1)

0 1 1 1 1 2 2 1 1

2
1 1 2 2 0 1 1 2 2 1 1 0 1 1

3 cos h ( ) sin h ( )

min ( ) cosh( ) ( )sin h( )

s s sNumerator z D z D z

Deno ator D D z D D z

μ β β β β

β β β β β β

= Δ − + Δ −

= + Δ + + Δ
 (8) 

N = 3: 

 

' (1)
0 1 1 1 1 2 2 2 2 3 3 2 2

2 2 3 3 2 2 2 2 2 2 1 1

2
2 2 2 2 1 1 3 3 0 1 1 3 3 1 1 0 1 1

3 ( cos h( ( ))( cos h( ) sin h( ))

( cos h( ) sin h( ))sin h( ( )))

min cos h( )( ( ) cos h( ) ( )sin h( ))

(

s s

s

Numerator z D z D D

D D D z

Deno ator D D D z D D z

μ β β β β β β
β β β β β β
β β β β β β β β

= Δ − Δ + Δ
+ Δ + Δ Δ −

= Δ + Δ + + Δ

+ 2 2 2 2 2
21 3 1 3 2 2 0 1 1 2 1 3 1 3 0 1 1 2 2( ) cos h( ) ( )sin h( )) sin h( )D D D z D D D zβ β β β β β β β β+ Δ + + Δ × Δ

(9) 

The time-resolved electric-field autocorrelation function ( , 0, , )G z t τ=ρ measured on the 

top surface (z = 0) of the slab is the inverse Fourier transform of 
0 ( , 0, , )G z ω τ

∧
=q  

 

2
02

0 02

1 1
( , 0, , ) ( , 0, , ) exp( )exp( )

2 (2 )

1
( , 0, , ) ( ) exp( )

(2 ) q

G z t d d G z i i t

d dqG z qJ q i t

ω

ω

τ ω ω τ ω
π π

ω ω τ ρ ω
π

∧

∧

= = = − ⋅ −

= = −

 

 

q
ρ q q q ρ

q

(10) 
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where J0 denotes the zero-order Bessel function of the first 

kind,
2

0 0

1
( ) exp( sin )

2
J q i q d

π
ρ ρ θ θ

π
= − . The last expression in Eq. (10) comes out is because 

that we can define the location of detector as ρ = (ρx, ρy) = (0, ρ) due to the axial symmetric 

geometry, and 0 ( , 0, , )G z ω τ
∧

=q  is independent of the polar angle. It might be noted that the 

more accurate form for the extrapolation length is z0 = 2AD1, A = 2.9486 for nr = 1.4, A = 
2.5153 for nr = 1.33, respectively, where nr is the refractive index of the medium. 

2.2 TD-DCS analytical model for a semi-infinite medium embedded with a small 
dynamic heterogeneity 

Assume that a laser point source is located at r1 = (x1, y1, z1 = 0), a detector at r3 = (x3, y3, z3 
= 0) on the top surface of a semi-infinite medium with a small dynamic heterogeneity at r2 = 
(x2, y2, z2), as shown in Fig. 2. The medium is characterized by optical parameters including 
the absorption coefficient μa, reduced scattering coefficient μs

’, and dynamic parameter DB. 
Here we only consider dynamic heterogeneity, which implies that the small inclusion has the 
same optical properties, but different dynamic parameter DB + δDB. 

 

Fig. 2. Geometric scheme for the perturbation model including the position of the source, 
detector and heterogeneity inclusion. 

Considering the similarity of the correlation diffusion equation [Eq. (1)] to the photon 
diffusion equation, the perturbation model developed for photon diffusion in a semi-infinite 
medium embedded with a small inclusion can be adopted [16], but with a simple 
replacement ' 22a a s BD kμ μ μ τ→ +  [4, 5, 8]. The detailed expressions are presented below. 

We denote the electric-field autocorrelation function in a semi-infinite medium as 
0 ( , , )G t τr . When a small inclusion (with volume V) with different dynamics is included, the 

field autocorrelation function is ( , , )G t τr . According to the perturbation approach, ( , , )G t τr  

can be written as 0( , , ) ( , , ) ( , , )G t G t G tτ τ δ τ= +r r r , where the second term is related to the 

perturbation induced by the inclusion [4,5]. 
In a semi-infinite medium, the field autocorrelation on the surface (z = 0) is 
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2 2
3 1 3 1( ) ( )x x y yρ = − + −  is the distance from the source to the detector on the surface, D = 

v/(3μs
’) is the photon diffusion coefficient. 
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where 
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 (13) 

3. Verification of the analytical model with the Monte Carlo simulation 

To verify the analytical model, we calculated g1 for a 3-layer turbid sample and a semi-
infinite medium embedded with a small spherical dynamic heterogeneity. For each case, the 
analytical prediction for g1 was compared to the Monte Carlo (MC) simulation. 

In MC simulation, the survival weight and partial pathlength in each layer (or 
heterogeneity component) was recorded for each emitted photon package. When calculating 
g1 for a certain pathlength s, we chose a pathlength window (e.g., from 0.9·s to 1.1·s) and 
selected all photon packages (e.g., M photon packages in total) whose pathlengths fell within 
this window. The relative weight (or probability) W(si), i = 1:M, was calculated for each 
photon package among all selected M photon packages. The g1 for the pathlength s was then 
calculated from Eq. (14), 

 2 ,( ) ( )
1

1

( , ) ( ) exp( 2 )
M N

j j
i s ij B

i j

g s W s k s Dτ τ μ
=

= −   (14) 

The index j denotes each layer (or heterogeneity component) from 1 to N (e.g., for a 3-layer 
model, N = 3), and sij is the partial pathlength of the photon package i in layer j (or 
component j). 

3.1 Simulation with a 3-layer model 

When using DCS to study the human brain, the head can be approximately modeled as a 3-
layer turbid medium consisting of the scalp, skull and brain [13]. The optical and dynamic 
parameters used for a head-like 3-layer model are listed in Table 1 [15, 17]. The wavelength 
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of the illuminating light was 785 nm, and the refractive index nr of each layer was 1.4. In this 
head-like model, the skull layer was assumed to be static (i.e., DB = 0). 

Simulations were performed for source-detector separations of 3.0 cm and 0 cm, 
respectively. Three pathlengths were selected for TD-DCS: 10 cm, 20 cm and 25 cm. 
Comparison of g1 between the theory and MC simulation are shown in Fig. 3 for 3 cm and 
Fig. 4 for 0 cm source-detector separation, respectively. It is clear that for a wide range of lag 
times, e.g., from 10−7 to 10−3 s, the prediction of the analytical model for g1 is highly 
consistent with the Monte Carlo simulation. 

The MC simulation for the 3-layer model was performed on a computer [Intel (R) Q9550 
(2.83G), Quad-core processor, 4G RAM] with CUDA accelerated Monte Carlo method [18]. 
This is a fast MC algorithm for the layered model. For the source-detector separations of 0 
cm, the running time was about 41.7 s with 44918563 launched and 10021236 received 
photon packages; while for the separation of 3 cm, the running time was about 1586.3 s with 
1351643506 launched and 10002018 received photon packages. 

Table 1. Parameters for the 3-layer model (head-like model) 

 Thickness (cm) μa (cm−1) μs
’ (cm−1) DB (cm2/s) 

Layer 1 (scalp) 0.385 0.191 6.60 1 × 10−8 

Layer 2 (skull) 0.769 0.136 8.60 0 

Layer 3 (brain) infinite 0.186 11.10 6 × 10−8 

 

Fig. 3. Simulation result of the 3-layer head-like model for the source-detector separation = 3.0 
cm: the normalized electric-field autocorrelation function g1 from the analytical model and 
Monte Carlo simulation for the three selected pathlengths s = 10 (red), 20 (blue), and 25 cm 
(black), respectively. 
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Fig. 4. Simulation result of the 3-layer head-like model for the source-detector separation = 0.0 
cm: the normalized electric-field autocorrelation function g1 from the analytical model and 
Monte Carlo simulation for the three selected pathlengths s = 10 (red), 20 (blue), and 25 cm 
(black), respectively. 

3.2 Simulation for a semi-infinite medium with a small inclusion of dynamic 
heterogeneity 

In this simulation, we assumed the optical parameters for the medium are μa = 0.16 cm−1, μs
’ = 

7.6 cm−1, and the refractive index nr = 1.4. The scattering particle diffusion coefficient DB = 1 
× 10−8 cm2/s. A small spherical inclusion was located in the sample right beneath the source, 
with the same optical parameters, but different dynamic parameter DBI = 6 × 10−8 cm2/s. The 
sphere had a radius of 0.5 cm, with a distance of 1.5 cm from its center to the sample surface. 
We used the null source-detector separation (i.e., source-detector separation = 0.0 cm) to 
detect the normalized electric-field autocorrelation function (g1). Thus the locations for the 
source, heterogeneity inclusion and detector were r1 = (0, 0, 0), r2 = (0, 0, 1.5 cm) and r3 = (0, 
0, 0), respectively. Figure 5 shows the results from the analytical model and Monte Carlo 
simulations for four selected pathlengths, s = 5, 10, 20, and 40 cm, respectively. The results 
from the model are again highly consistent with the Monte Carlo simulation. 

This simulation was performed on a computer [Intel Xeon E5-2670 (2.3G), 2-core 
processor, and 64 G memory] with a mesh-based Monte Carlo method (MMCM) [19]. The 
running time was about 20423.6 s with 109 launched and 143360025 received photon 
packages. 
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Fig. 5. Simulation result for a semi-infinite medium embedded with a small spherical dynamic 
heterogeneity: The source-detector separation = 0 cm. The normalized electric-field 
autocorrelation function g1 obtained by the analytical model and Monte Carlo (MC) 
simulations for the four selected pathlengths s = 5 (red), 10 (pink), 20 (blue) and 40 cm 
(black), respectively. 

3.3 Sensitivity to deeper layer dynamics 

A remarkable advantage of TD-DCS over CW-DCS is that, with pathlength-resolved 
measurements, it is possible to differentiate dynamics from different depths in the medium, 
and at the same time it is also possible to achieve higher contrast to the change in dynamics in 
deeper layers, such as cerebral blood flow change in the cortex induced by functional 
activation. To demonstrate this, we used the analytical model presented above for the 3-layer 
head-like model. The optical and dynamic parameters used in the simulation were the same as 
those listed in Table 1. We assumed that the cortical (the 3rd layer) dynamics were enhanced 
by 50% during activation (or stimulation) of the brain. The source-detector separation was set 
at 3.0 cm. In this simulation, the light intensity autocorrelation function (g2) was considered, 
because in real measurements, g2 is recorded instead of g1, and one can derive g2 from g1 via 
the Siegert relation, g2 = 1 + β|g1|

2. Here β is an intercept on the g2 axis that is dependent on 
the laser coherence length and the detection fiber. If the coherence length is long enough, 
photon detection with a single mode fiber gives rise to β = 0.5. The simulation of g2 of CW-
DCS and TD-DCS (for s = 20 cm) with single-mode fiber detection is shown in Fig. 6. The 
change in g2 between the baseline and stimulation (Δg2) is also shown on the right panels in 
Fig. 6(b) and 6(d). The maximum change in g2 in CW-DCS is about 0.025, while in TD-DCS 
with s = 20 cm, it is about 0.04, indicating that TD-DCS (with s = 20 cm) has higher 
sensitivity to deeper layer dynamics than CW-DCS. 
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Fig. 6. (a) The normalized intensity autocorrelation function g2-1 of CW-DCS. (b) The change 
in g2 between baseline and stimulation for CW-DCS. (c) The normalized intensity 
autocorrelation function g2-1 of TD-DCS with a selected pathlength s = 20 cm for the baseline 
and stimulation. (d) The change in g2 between baseline and stimulation for TD-DCS. 

In a TD-DCS measurement, a variety of pathlengths can be selected for g2. In principal, a 
longer pathlength can give rise to a higher contrast, as shown in Fig. 7(a). However, with the 
increase of the photon pathlength, the number of detected diffuse reflected photons 
dramatically decreases, as seen in Fig. 7(b). For example, at the pathlength s = 20 cm, the 
diffuse reflectance, R, is 3.35 × 10−8/cm2ps for each incident photon, while at the pathlength s 
= 30 cm, R would be 5.88 × 10−9/cm2ps. In actual experiments, lower photon count rates 
would give rise to lower signal to noise ratio on g2. 

To further demonstrate that TD-DCS provides higher contrast to deeper dynamics 
compared to CW-DCS, and to illustrate the influence of photon count rate on measured g2, we 
performed a simulation for g2 under real experimental conditions. We assumed the incident 
power of laser (785 nm) was 50 mW, and the recording time (or integration time) of g2 was 5 
s, which were set the same for both the CW-DCS and TD-DCS measurements. The same 3-
layer model (as shown in Table 1) was adopted. During activation, the cortical dynamics were 
assumed to increase by 50%. In both simulated experiments, a single-mode fiber of 5 micron 
diameter, numerical aperture (NA) of 0.22 was assumed to detect emitted photons 3 cm away 
from the source. The quantum efficiency of the photon detector (such as avalanche 
photodiode, APD) was also considered: 65% for CW-DCS (representing the red-enhanced 
single-photon counting detector from Excelitas, Quebec, Canada), and 40% (representing the 
red-enhanced single-photon avalanche diode detector from SPADlab, Politechnico di Milano 
and MPD Srl) for TD-DCS. The repetition rate of the pulsed laser for the TD-DCS was set at 
150 MHz. With these assumptions, we estimated the count rate of detected photons in CW-
DCS to be 28.5 kHz. For the TD-DCS measurement, we further assumed the time-window for 
collecting photons with a selected pathlength as 100 ps. The photons detected for each 
incident pulse was 8.703 × 10−6 /cm2ps and 1.528 × 10−6 /cm2ps for the pathlengths of 20 and 
30 cm, respectively. 
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Fig. 7. (a) The change in g2 between the baseline and stimulation in the 3-layer model (source-
detector separation = 3.0 cm) for different pathlengths. (b) The diffuse reflectance, R 
(photons/cm2ps) with respect to the photon pathlength. 

By generating a photon sequence with a known count rate and correlation between 
photons (which can be determined if the g2 (or g1) is known, e.g., from the 3-layer model), g2 
can be simulated [20], as shown in Fig. 8. In CW-DCS, there is clearly a visible difference 
between the baseline (blue line) and stimulation (pink line) on the theoretical prediction of g2; 
however, due to the limited photon count rate (28.5 kHz) and integration time (5 s), it hardly 
differentiates the simulated (or ‘measured’) g2 between the baseline (black line) and 
stimulation (red line) [Fig. 8(a)]. In TD-DCS, when the selected photon pathlength s = 20 cm 
[Fig. 8(b)], the two ‘measured’ g2 shows significant difference, in particular, when the lag 
time τ is within the range from 3 × 10−6 to 5 × 10−5s. This large difference (contrast) enables 
TD-DCS to more accurately reveal the changes in deep dynamics (such as cerebral blood 
flow). The difference in the analytical g2 between the baseline and stimulation is much larger 
for s = 30 cm than s = 20 cm, because photons with longer paths are likely to reach deeper 
layer where the changes in dynamics occurs. However due to the lower photon count rates, 
detected for each incident pulse at s = 30 cm was 17.6% of that when at s = 20 cm, the 
contrast between the baseline and stimulation at s = 30 cm is worse than s = 20 cm [Fig. 8(c)]. 
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Fig. 8. The autocorrelation function g2 in (a) CW-DCS and TD-DCS for selected pathlength 
(b) s = 20 cm and (c) s = 30 cm. In each case, the theoretical prediction from the 3-layer model 
and simulation on g2 are presented for the baseline and stimulation. 

In contrast to CW-DCS, TD-DCS is a pathlength-resolved measurement, which means 
that even for a fixed source-detector separation; photons from selected pathlengths can be 
used to generate the autocorrelation function [15]. Therefore, when the influence of the 
photon count is taken into account, an optimal pathlength may exist for which the best 
differentiation can be achieved. On the other hand, unlike CW-DCS, TD-DCS may not 
necessarily require larger source-detector separation to probe for deeper dynamics, as recently 
shown by Sutin et al. [15]. By selecting a longer path, it is possible to reveal the deeper 
dynamics even with shorter source-detector separation. To elucidate this, we used the 3-layer 
head-like model to perform a simulation with zero source-detector separation, as shown in 
Fig. 9. With zero (null) source-detector separation, as Torricelli et al [21] and Pifferi et all 
[22] have shown for time resolved spectroscopy, the change in the deeper (3rd layer) 
dynamics can be readily revealed in g1 with longer pathlengths, such as 15 to 20 cm. 
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Fig. 9. The pathlength-resolved normalized electric field autocorrelation function g1 for the 3-
layer head-like model with a source-detector separation of 0 cm for the baseline and 
stimulation with pathlengths of s = 10, 15, and 20 cm. The parameters used for the stimulation 
were the same as those used in Figs. 7 and 8, except for the source-detector separation. 

4. Discussion and conclusion 

We have presented analytical expressions for the time-resolved electric-field autocorrelation 
function for a multi-layer homogeneous turbid media as well as for a semi-infinite medium 
embedded with a small dynamic heterogeneity. These two models are closely related to the 
biomedical applications of DCS such as non-invasive measurement of cerebral blood flow 
associated with brain activation through intact scalp and skull, and the detection of a small 
tumor in breast tissue. The presented analytical models were validated with the Monte Carlo 
(MC) simulations, showing that in a wide range of lag times, the theoretical prediction of 
electric-field autocorrelation functions were highly consistent with the MC simulations. 

The present theoretical models are based on the diffusion approximation, which implies 
the detected photons should undergo a lot of scattering events. In the simulations, the null 
(zero) source-detector separation [21] was used, while the selected pathlength s for 
calculating the pathlength-resolved g1 was at least 5 cm, much longer than the transport mean 
free path length (e.g., 0.09-0.15 cm). Thus, the diffusion approximation was valid for 
describing transportation of the detected photons, which was demonstrated by the Monte 
Carlo simulations. However, in a real experiment, measurement with a null (or very short) 
source-detector separation may induce saturation of photon detector (such as avalanche 
photodiode, APD). To deal with this problem, Pifferi et al proposed a gated-detection 
approach, where an APD was operated in time-gated mode to prevent detection of the early 
photons for enhanced contribution of late photons [22]. 

In this study, we only considered Brownian motion as dynamics in the sample. It is 
because that many studies have demonstrated Brownian motion model can better explain the 
experimental data measured from living tissues including the human brain [6,8,13]. However, 
if other dynamics model is adopted such as the random flow (with V2 as the mean squared 
velocity of the scatterers), the present theory still holds by using (1/6)V2τ2 to replace DBτ in 
the equations, e.g., Eqs. (1), (11) and (12). It should be noted that in recent years, more 
accurate models for describing the dynamics in tissue has been investigated [10,11,23]. For 
example, the hydrodynamic diffusion model which accounts for not only Brownian diffuse 
motion, but also ballistic motion at short lag times. In this model the mean squared 
displacement [ ]{ }2 ( ) 6 1 exp( / )c cH

r Dτ τ τ τ τΔ = − − − , where DH is called the effective 

hydrodynamic diffusion coefficient and τc is the time scale required to establish diffusive 
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motion. If one assumes dynamic model for the present theory, one can use the term 

[ ]{ }1 exp( / )c cH
D τ τ τ τ− − −  instead of DBτ in the corresponding equations. 

By using these analytical and Monte Carlo models we also demonstrate the advantage of 
TD-DCS over conventional continuous-wave DCS (CW-DCS) for improved sensitivity of 
probing deeper dynamics. Since TD-DCS provides pathlength-resolved measurements, it 
allows discriminating dynamics originating from different layers. We showed that by 
selecting the source-detector separation and pathlength, one can achieve higher contrast to the 
changes in dynamics in deeper layers, such as cerebral blood flow change in the cortex 
induced by functional activation. Furthermore, one can use a fixed source-detector separation 
and select various pathlengths to generate the autocorrelation function [15]. Thus, by 
considering optimal photon counts and detector noise levels, one can achieve high sensitivity 
to deeper dynamics even with short source-detector separations. As Torricelli et al. [21] has 
shown the concept and advantages of using the null (zero) source-detector separation in time 
resolved spectroscopy measurements, we used a 3-layer head-like model to perform a 
simulation with null source-detector separation and have successfully demonstrated 
sensitivity to the deeper (3rd layer) dynamics. 

Although the results obtained by the analytical model for the electric-field autocorrelation 
function (g1) matches well with the Monte Carlo simulations, there can be several potential 
sources of errors. The diffusion approximation used for solving the analytical solution of g1 
might be one reason for this discrepancy. In addition, numerical calculation errors could 
contribute to the differences between the analytical model and Monte Carlo simulations. For 
the multi-layer model solution, the integral bound for q theoretically should be from 0 to + ∞, 
while for ω from -∞ to + ∞ in Eq. (10). However in practice, the numerical integration was 
performed with limited range for both q and ω. For example, in our calculation we used the 
integral range for q as [0 cm−1 to 300 cm−1] and ω as [-1.2 × 1013 Hz to 1.2 × 1013 Hz]. 
Furthermore, for the small dynamic heterogeneity in a semi-infinite medium analytical 
solution, the model error could originate from the perturbation approximation, especially 
when the inclusion volume is larger and closer to the surface.. 

In conclusion, these analytical solutions provide modeling layered and heterogeneous 
tissue, closely representing the clinical scenarios like quantification of dynamics in brain and 
breast tissue. Thus, they can be widely used in future experiments for characterization of 
dynamic contrasts in a variety of preclinical and clinical settings. In particular, with known 
optical parameters of tissues such as those obtained from the time-resolved spectroscopy 
(TRS) measurements, it is possible to quantify accurate blood flow index in deep layers by 
fitting the measured time-resolved data to the theoretical models. Moreover, the analytical 
solution based simulations can be utilized for optimization of experimental settings such as 
choosing optimal source-detector separation, photon pathlength selection, which would allow 
the optimal contrast for deep tissue. Thus, the presented solutions provide opportunities for 
quantitative implementation of TD-DCS in clinical and preclinical settings. 
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